Handbook of Ecological and Ecosystem Engineering. Группа авторов
Читать онлайн книгу.in drying soil. Plant Soil 292: 305–315.
98 98 Scordia, D. and Cosentino, S.L. (2019). Perennial energy grasses: resilient crops in a changing European agriculture. Agriculture 9: 169.
99 99 Zegada‐Lizarazu, W., Salvi, S., and Monti, A. (2020). Assessment of mutagenized giant reed clones for yield, drought resistance and biomass quality. Biomass Bioenergy 134: 105501.
100 100 Haworth, M., Marino, G., Riggi, E. et al. (2019). The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Ann. Bot. 124: 567–579.
101 101 Cosentino, S.L., Scordia, D., Sanzone, E. et al. (2014). Response of giant reed (Arundo donax L.). to nitrogen fertilization and soil water availability in semi‐arid Mediterranean environment. Eur. J. Agron. 60: 22–32.
102 102 Zegada‐Lizarazu, W. and Monti, A. (2019). Deep root growth, ABA adjustments and root water uptake response to soil water deficit in giant reed. Ann. Bot. 124: 605–615.
103 103 Cosentino, S.L., Copani, V., Testa, G., and Scordia, D. (2015). Saccharum spontaneum L. ssp. aegyptiacum (Willd.). Hack. a potential perennial grass for biomass production in marginal land in semi‐arid Mediterranean environment. Ind. Crop. Prod. 75: 93–102.
104 104 Scordia, D., Testa, G., Copani, V. et al. (2017). Lignocellulosic biomass production of Mediterranean wild accessions (Oryzopsis miliacea, Cymbopogon hirtus, Sorghum halepense and Saccharum spontaneum) in a semi‐arid environment. Field Crops Res. 214: 56–65.
105 105 Dąbrowski, P., Baczewska‐Dąbrowska, A.H., Kalaji, H.M. et al. (2019). Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. Sensors 19: 2736.
106 106 Taylor, G., Donnison, I.S., Murphy‐Bokern, D. et al. (2019). Sustainable bioenergy for climate mitigation: developing drought‐tolerant trees and grasses. Ann. Bot. 124: 513–520.
107 107 Zhang, Y., Chen, Y., Lu, H. et al. (2016). Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crops Res. 194: 83–93.
108 108 Muhammad, A.A. (2012). Waterlogging stress in plants: a review. Afr. J. Agric. Res. 7: 1976–1981.
109 109 Arguello, M.N., Mason, R.E., Roberts, T.L. et al. (2016). Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield components. Field Crops Res. 194: 57–64.
110 110 Colmer, T.D. and Flowers, T.J. (2008). Flooding tolerance in halophytes. New Phytol. 179: 964–974.
111 111 McDonald, M.P., Galwey, N.W., and Colmer, T.D. (2002). Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 25: 441–451.
112 112 Akhtar, I. and Nazir, N. (2013). Effect of waterlogging and drought stress in plants. Int. J. Water Res. Environ. Sci. 2: 34–40.
113 113 Kadam, S., Abril, A., Dhanapal, A.P. et al. (2017). Characterization and regulation of aquaporin genes of Sorghum [Sorghum bicolor (L.). Moench] in response to waterlogging stress. Front. Plant Sci. 8: 1–14.
114 114 Liu, M. and Jiang, Y. (2015). Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short‐term waterlogging and submergence stress. Plant Physiol. Biochem. 95: 57–64.
115 115 Pompeiano, A., Reyes, T.H., Moles, T.M. et al. (2019). Photosynthetic and growth responses of Arundo donax L. plantlets under different oxygen deficiency stresses and reoxygenation. Front. Plant Sci. 10: 408.
116 116 Quinn, L.D., Straker, K.C., Guo, J. et al. (2015). Stress‐tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenergy Res. 8: 1081–1100.
117 117 Martins, A.P., Denardin, L.G.O., Tiecher, T. et al. (2020). Nine‐year impact of grazing management on soil acidity and aluminum speciation and fractionation in a long‐term no‐till integrated crop‐livestock system in the subtropics. Geoderma 359: 113986.
118 118 Niu, H., Leng, Y., Ran, S. et al. (2020). Toxicity of soil labile aluminum fractions and aluminum species in soil water extracts on the rhizosphere bacterial community of tall fescue. Ecotoxicol. Environ. Saf. 187: 109828.
119 119 Zhao, X.Q., Chen, R.F., and Shen, R.F. (2014). Coadaptation of plants to multiple stresses in acidic soils. Soil Sci. 179: 503–513.
120 120 Ashraf, S., Dixit, S., Ramteke, P.W., and Rizvi, A.Z. (2019). Interactive role of brassinosteroids and calcium ameliorates in response to the aluminium toxicity in plants. Int. J. Trend Sci. Res. Dev. 3: 183–203.
121 121 Aguilera, P., Borie, F., Seguel, A., and Cornejo, P. (2019). How does the use of non‐host plants affect arbuscular mycorrhizal communities and levels and nature of glomalin in crop rotation systems established in acid andisols? In: Mycorrhizal Fungi in South America (eds. M. Pagano and M. Lugo), Fungal Biology, 147–158. Cham, Switzerland: Springer.
122 122 Zheng, S.J. (2010). Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann. Bot. 106: 183–184.
123 123 Kuswantoro, H. and Zen, S. (2013). Performance of acid‐tolerant soybean promising lines in two planting seasons. Int. J. Biol. 5: 49–56.
124 124 Konaka, T., Ishimoto, Y., Yamada, M. et al. (2019). Tolerance evaluation of Jatropha curcas and Acacia burkei to acidic and copper/nickel‐contaminated soil. J. Environ. Biol. 40: 1109–1114.
125 125 Awa, S.H. and Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 231: 1–15.
126 126 Ye, S., Zeng, G., Wu, H. et al. (2017). Biological technologies for the remediation of co‐contaminated soil. Crit. Rev. Biotechnol. 37: 1062–1076.
127 127 Ma, J.W., Wang, F.Y., Huang, Z.H., and Wang, H. (2010). Simultaneous removal of 2,4‐dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J. Hazard. Mater. 176: 715–720.
128 128 Ye, S., Zeng, G., Wu, H. et al. (2017). Co‐occurrence and interactions of pollutants, and their impacts on soil remediation – a review. Crit. Rev. Environ. Sci. Technol. 47: 1528–1553.
129 129 Ojuederie, O.B. and Babalola, O.O. (2017). Microbial and plant‐assisted bioremediation of heavy metal polluted environments: a review. Int. J. Environ. Res. Public Health 14: 1504.
130 130 Villa, R.D., Trovó, A.G., and Nogueira, R.F.P. (2008). Environmental implications of soil remediation using the Fenton process. Chemosphere 71: 43–50.
131 131 Akhtar, F.Z., Archana, K.M., Krishnaswamy, V.G., and Rajagopal, R. (2020). Remediation of heavy metals (Cr, Zn). Using physical, chemical and biological methods: a novel approach. SN Appl. Sci. 2: 267.
132 132 Cheng, M., Zeng, G., Huang, D. et al. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs). For remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284: 582–598.
133 133 Yao, Z., Li, J., Xie, H., and Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 16: 722–729.
134 134 Sun, X., Meng, J., Huo, S. et al. (2020). Remediation of heavy metal pollution in soil by microbial immobilization with carbon microspheres. Int. J. Environ. Sci. Dev. 11: 43–47.
135 135 Yadav, K.K., Singh, J.K., Gupta, N., and Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J. Mater. Environ. Sci. 8: 740–757.
136 136 Pauwels, M., Willems, G., Roosens, N. et al. (2008). Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal‐polluted sites: implications for phytoremediation. Mol. Ecol. 17: 109–119.
137 137 Coppa, E., Astolfi, S., Beni, C. et al. (2020). Evaluating the potential use of Cu‐contaminated soils for giant reed (Arundo donax, L.). cultivation as a biomass crop. Environ. Sci. Pollut. Res. 27: 8662–8672.
138 138