Handbook of Ecological and Ecosystem Engineering. Группа авторов

Читать онлайн книгу.

Handbook of Ecological and Ecosystem Engineering - Группа авторов


Скачать книгу
of heavy metals through plant growth promoting rhizobacteria: a review. J. Environ. Manag. 254: 109779.

      139 139 Patra, D.K., Pradhan, C., and Patra, H.K. (2020). Toxic metal decontamination by phytoremediation approach: concept, challenges, opportunities and future perspectives. Environ. Technol. Innov. 18: 100672.

      140 140 Gomes, H.I. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environ. Technol. Rev. 1: 59–66.

      141 141 Yang, Y., Zhou, X., Tie, B. et al. (2017). Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil. Chemosphere 188: 148–156.

      142 142 Zhou, J., Chen, L.H., Peng, L. et al. (2020). Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 247: 125856.

      143 143 Papazoglou, E.G. and Fernando, A.L. (2017). Preliminary studies on the growth, tolerance and phytoremediation ability of sugarbeet (Beta vulgaris L.). grown on heavy metal contaminated soil. Ind. Crop. Prod. 107: 463–471.

      144 144 Parrish, D.J. and Fike, J.H. (2005). The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24: 423–459.

      145 145 Ruiz‐Olivares, A., Carrillo‐González, R., González‐Chávez, M.C.A., and Soto‐Hernández, R.M. (2013). Potential of castor bean (Ricinus communis L.). for phytoremediation of mine tailings and oil production. J. Environ. Manag. 114: 316–323.

      146 146 Bauddh, K., Singh, K., Singh, B., and Singh, R.P. (2015). Ricinus communis: a robust plant for bio‐energy and phytoremediation of toxic metals from contaminated soil. Ecol. Eng. 84: 640–652.

      147 147 Pidlisnyuk, V., Stefanovska, T., Lewis, E.E. et al. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 33: 1–19.

      148 148 Barbosa, B. and Fernando, A.L. (2018). Aided phytostabilization of mine waste. In: Bio‐Geotechnologies for Mine Site Rehabilitation (eds. M.N.V. Prasad, P.J.C. Favas and S.K. Maiti), 147–157. UK: Elsevier Inc.

      149 149 Barbosa, B., Boléo, S., Sidella, S. et al. (2015). Phytoremediation of heavy metal‐contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 8: 1500–1511.

      150 150 Shaheen, S., Ahmad, R., Mahmood, Q. et al. (2019). Gene expression and biochemical response of giant reed under Ni and Cu stress. Int. J. Phytoremediation 21: 1474–1485.

      151 151 Iram, S., Basri, R., Ahmad, K.S., and Jaffri, S.B. (2019). Mycological assisted phytoremediation enhancement of bioenergy crops Zea mays and Helianthus annuus in heavy metal contaminated lithospheric zone. Soil Sediment Contam. 28: 411–430.

      152 152 Rengasamy, P. (2006). World salinization with emphasis on Australia. J. Exp. Bot. 57: 1017–1023.

      153 153 Bui, E.N. (2013). Soil salinity: a neglected factor in plant ecology and biogeography. J. Arid Environ. 92: 14–25.

      154 154 Dahlhaus, P.G., Cox, J.W., Simmons, C.T., and Smitt, C.M. (2008). Beyond hydrogeologic evidence: challenging the current assumptions about salinity processes in the Corangamite region, Australia. Hydrogeol. J. 16: 1283.

      155 155 Nackley, L.L. and Kim, S.H. (2015). A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. Glob. Change Biol. Bioenergy 7: 752–762.

      156 156 Sánchez, E., Scordia, D., Lino, G. et al. (2015). Salinity and water stress effects on biomass production in different Arundo donax L. clones. Bioenergy Res. 8: 1461–1479.

      157 157 Romero‐Munar, A., Baraza, E., Gulías, J., and Cabot, C. (2019). Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax l.) plants grown under low phosphorus by reducing leaf NA+ concentration and improving phosphorus use efficiency. Front. Plant Sci. 10: 843.

      158 158 Stavridou, E., Hastings, A., Webster, R.J., and Robson, P. (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. Glob. Change Biol. Bioenergy 9: 92–104.

      159 159 Burnham, M., Eaton, W., Selfa, T. et al. (2017). The politics of imaginaries and bioenergy sub‐niches in the emerging Northeast U.S. bioenergy economy. Geoforum 82: 66–76.

      160 160 Dickinson, N.M., Baker, A.J.M., Doronila, A. et al. (2009). Phytoremediation of inorganics: realism and synergies. Int. J. Phytoremediation 11: 97–114.

      161 161 Fernando, A.L., Rettenmaier, N., Soldatos, P., and Panoutsou, C. (2018). Sustainability of perennial crops production for bioenergy and bioproducts. In: Perennial Grasses for Bioenergy and Bioproducts (ed. E. Alexopoulou), 245–283. UK: Academic Press, Elsevier Inc.

      162 162 Pires, J.R.A., Souza, V.L., and Fernando, A.L. (2019). Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind. Crop. Prod. 140: 111642.

      163 163 Fernando, A.L., Barbosa, B., Costa, J., and Papazoglou, E.G. (2016). Giant reed (Arundo donax L.).: a multipurpose crop bridging phytoremediation with sustainable bio‐economy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 77–95. UK: Elsevier Inc.

      164 164 Fernando, A.L., Duarte, M.P., Vatsanidou, A., and Alexopoulou, E. (2015). Environmental aspects of fiber crops cultivation and use. Ind. Crop. Prod. 68: 105–115.

      165 165 Pascoal, A., Quirantes‐Piné, R., Fernando, A.L. et al. (2015). Phenolic composition and antioxidant activity of kenaf leaves. Ind. Crop. Prod. 78: 116–123.

      166 166 Souza, V.G.L., Fernando, A.L., Pires, J.R.A. et al. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 107: 565–572.

      167 167 Souza, V.G.L., Rodrigues, P.F., Duarte, M.P., and Fernando, A.L. (2018). Antioxidant migration studies in chitosan films incorporated with plant extracts. J. Renew. Mater. 6: 548–558.

      168 168 Pires, J.R.A., Souza, V.G.L., and Fernando, A.L. (2018). Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packag. Shelf Life 17: 142–149.

      169 169 Souza, V.G.L., Rodrigues, C., Ferreira, L. et al. (2019). in vitro; bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crop. Prod. 140: 111563.

      170 170 Zanetti, F., Monti, A., and Berti, M.T. (2013). Challenges and opportunities for new industrial oilseed crops in EU‐27: a review. Ind. Crop. Prod. 50: 580–595.

      171 171 Righini, D., Zanetti, F., Martínez‐Force, E. et al. (2019). Shifting sowing of camelina from spring to autumn enhances the oil quality for bio‐based applications in response to temperature and seed carbon stock. Ind. Crop. Prod. 137: 66–73.

      172 172 Hemida, A. and Abdelrahman, M. (2020). Monitoring separation tendency of partial asphalt replacement by crumb rubber modifier and guayule resin. Constr. Build. Mater. 251: 118967.

      173 173 Ren, X. and Cornish, K. (2019). Eggshell improves dynamic properties of durable guayule rubber composites co‐reinforced with silanized silica. Ind. Crop. Prod. 138: 111440.

       Sanchayita Rajkhowa1, Nazmun Ara Khanom1, and Jyotirmoy Sarma2

       1 Department of Chemistry, Jorhat Institute of Science & Technology (JIST), Jorhat, Assam, India

       2 Department of Chemistry, Kaziranga University, Jorhat, Assam, India

       What's the use of a fine house if you haven't got a tolerable planet to put it on?

       Henry David Thoreau.

      Familiar Letters of Henry David Thoreau, ed. Franklin Benjamin Sanborn,


Скачать книгу