Principios del entrenamiento de la fuerza y del acondicionamiento físico NSCA (Color). G. Gregory Haff
Читать онлайн книгу.del entrenamiento anaeróbico, dado que a menudo se exige a los atletas que se ejerciten casi al máximo en condiciones de fatiga durante la competición. Sin embargo, es crítico que se programe y prescriba un entrenamiento anaeróbico apropiado con el fin de mejorar las adaptaciones fisiológicas que determinan el rendimiento. El deporte competitivo exige la interacción compleja de todos los sistemas de energía y muestra el modo en que todos ellos contribuyen en distinto grado a cubrir las exigencias metabólicas globales de la competición (tabla 5.1).
Se han documentado gran variedad de adaptaciones físicas y fisiológicas después del entrenamiento anaeróbico, y estos cambios permiten mejorar los valores del rendimiento atlético (tabla 5.2). Entre las adaptaciones encontramos cambios del tejido nervioso, muscular y conjuntivo, así como en los sistemas cardiovascular y endocrino. Comprenden desde cambios que ocurren en la fase inicial del entrenamiento (p. ej., una a cuatro semanas) hasta aquellos que se producen tras muchos años de entrenamiento constante. La mayoría de los estudios de investigación han tratado las adaptaciones en las fases inicial e intermedia del entrenamiento (es decir, de 4 a 24 semanas). Conocer cómo los sistemas individuales del cuerpo humano responden a la actividad física usando el metabolismo anaeróbico proporciona una base de conocimiento a partir de la cual los especialistas de la fuerza y el acondicionamiento físico planifican y predicen el resultado de un programa específico de entrenamiento para, de este modo, centrarse en influir eficazmente en los puntos fuertes y debilidades individuales.
Adaptaciones neuronales
Muchas modalidades de entrenamiento anaeróbico recalcan la expresión de la velocidad y potencia musculares, y dependen enormemente de un óptimo reclutamiento de las neuronas para lograr un rendimiento máximo (un entrenamiento de alta calidad). El entrenamiento anaeróbico tiene la capacidad potencial de provocar adaptaciones a largo plazo del sistema neuromuscular, empezando por los centros superiores del cerebro y descendiendo hasta el nivel de las fibras musculares individuales (figura 5.1). Las adaptaciones neuronales son fundamentales para mejorar el rendimiento atlético, y el aumento de la fuerza neural es crítica para potenciar al máximo la expresión de fuerza y potencia musculares. Se cree que la fuerza neural aumenta por un mayor reclutamiento muscular (es decir, los principales músculos implicados en un ejercicio o movimiento específicos), una mejora de la frecuencia de activación neuronal y una mayor sincronización de las descargas neuronales durante contracciones musculares de alta intensidad (4, 69, 166, 167, 174). También se cree que se produce una reducción de los mecanismos inhibidores (de los órganos tendinosos de Golgi) con el entrenamiento a largo plazo (1, 63). Aunque no se entienda plenamente el modo en que coexisten estas respuestas complejas, resulta evidente que las adaptaciones neuronales suelen ocurrir antes de que se manifiesten cambios estructurales en el músculo esquelético (167).
Adaptaciones del sistema nervioso central
El incremento de la activación de unidades motoras comienza en los centros superiores del cerebro, donde el propósito de generar niveles máximos de fuerza y potencia musculares causa un aumento de la actividad de la corteza cerebral motora (41). A medida que se eleva el nivel de fuerza generada o cuando se empieza el aprendizaje de un nuevo ejercicio o movimiento, la actividad de la corteza motora primaria aumenta en un intento por respaldar la necesidad mejorada de la función neuromuscular. Las adaptaciones a los métodos de entrenamiento anaeróbicos se reflejan en cambios neuronales sustanciales en la médula espinal, sobre todo a lo largo de las vías corticoespinales descendentes (3). Después de usar métodos de entrenamiento anaeróbicos, se ha documentado que el reclutamiento de unidades motoras de contracción rápida aumenta para respaldar los mayores niveles de expresión de fuerza (151). Esta es una comparación de lo que se aprecia en personas no entrenadas (4), en las que la capacidad para reclutar al máximo unidades motoras es limitada, sobre todo las unidades motoras de contracción rápida. En personas no entrenadas o en aquellas que se recuperan de una lesión, se ha demostrado que la estimulación eléctrica es más eficaz que la activación voluntaria para que se manifiesten mejoras beneficiosas. Esta respuesta recalca la incapacidad potencial de estas poblaciones para activar con éxito todas las fibras musculares disponibles. Los estudios demuestran que solo el 71% del tejido muscular de población no entrenada se activa durante esfuerzos máximos (7).
TABLA 5.1 Exigencias metabólicas primarias en distintos deportes
Nota: Todos los tipos de metabolismo intervienen en cierta medida en todas las actividades.
Adaptaciones de las unidades motoras
La unidad funcional del sistema neuromuscular es la unidad motora. Compuesta por la motoneurona α y las fibras musculares que inerva, una unidad motora tal vez inerve menos de 10 fibras musculares en el caso de músculos pequeños e intrincados, o más de 100 fibras en los poderosos músculos del tronco y las extremidades. Cuando se busca la expresión de fuerza máxima, se deben activar todas las unidades motoras disponibles en el músculo. El cambio en la frecuencia de activación de la unidad motora también influye en la capacidad de generar fuerza. El aumento de la fuerza con una mayor frecuencia de activación pone de manifiesto la sumación de contracciones musculares sucesivas, mediante la cual los potenciales de acción se solapan temporalmente. Al aumentar la frecuencia de activación de la unidad motora, las fibras musculares se activan continuamente por los subsiguientes potenciales de acción antes de que tengan tiempo de relajarse por completo tras un potencial de acción previo. La sumación de potenciales de acción solapados se expresa como fuerza contráctil aumentada (1). Estas frecuencias de activación representan un mecanismo de adaptación que ha demostrado mejorar mediante el entrenamiento resistido con grandes cargas (166). Las mejoras de la fuerza y potencia máximas de los músculos agonistas se suelen asociar con: (a) un mayor reclutamiento; (b) un aumento de la frecuencia de activación, y (c) una mayor sincronización de las descargas neurales, que coordinan la actividad de múltiples músculos en sinergia (173), o (d) una combinación de los tres factores.
TABLA 5.2 Adaptaciones fisiológicas al entrenamiento resistido
Variable | Adaptación al entrenamiento resistido |
Rendimiento | |
Fuerza muscular | Aumenta |
Resistencia muscular | Aumenta para la producción de potencia elevada |
Potencia aeróbica | No cambia o aumenta ligeramente |
Potencia anaeróbica | Aumenta |
Ritmo de producción de fuerza | Aumenta |
Salto vertical | Mejora de la capacidad |
Velocidad de esprín | Mejora |
Fibras musculares | |
Área transversal de las fibras | Aumenta |
Densidad capilar | No cambia o disminuye |
Densidad mitocondrial | Disminuye |
Densidad miofibrilar | No cambia |
Volumen miofibrilar |
Aumenta
|