Engineering Solutions for CO2 Conversion. Группа авторов
Читать онлайн книгу.Fernandes, J., Simões, P.C., Mota, J.P.B., and Saatdjian, E. (2008). Applications of CFD in the study of supercritical fluid extraction with structured packing: dry pressure drop calculations. J. Supercrit. Fluids 47: 17–24.
20 20 Fernandes, J., Lisboa, P.F., Simões, P.C. et al. (2009). Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations. J. Supercrit. Fluids 50: 61–68.
21 21 Isoz, M. and Haidl, J. (2018). Computational‐fluid‐dynamics analysis of gas flow through corrugated‐sheet‐structured packing: effects of packing geometry. Ind. Eng. Chem. Res. 57: 11785–11796.
22 22 Armstrong, L.M., Gu, S., and Luo, K.H. (2013). Dry pressure drop prediction within Montz‐pak B1‐250.45 packing with varying inclination angles and geometries. Ind. Eng. Chem. Res. 52 (11): 4372–4378.
23 23 Owens, S.A., Perkins, M.R., and Eldridge, R.B. (2013). Computational fluid dynamics simulation of structured packing. Ind. Eng. Chem. Res. 52 (5): 2032–2045.
24 24 Haroun, Y., Raynal, L., and Alix, P. (2014). Prediction of effective area and liquid hold‐up in structured packings by CFD. Chem. Eng. Res. Des. 92: 2247–2254.
25 25 Lautenschleger, A., Olenberg, A., and Kenig, E.Y. (2015). A systematic CFD‐based method to investigate and optimise novel structured packings. Chem. Eng. Sci. 122: 452–464.
26 26 Sebastia‐Saez, D., Gu, S., Ranganathan, P., and Papadikis, K. (2015). Meso‐scale CFD study of the pressure drop, liquid hold‐up, interfacial area and mass transfer in structured packing materials. Int. J. Greenhouse Gas Control 42: 388–399.
27 27 Li, Q., Wang, T., Dai, C., and Lei, Z. (2016). Hydrodynamics of novel structured packings: an experimental and multi‐scale CFD study. Chem. Eng. Sci. 143: 23–35.
28 28 Yang, L., Liu, F., Saito, K., and Liu, K. (2018). CFD modeling on hydrodynamic characteristics of multiphase counter‐current flow in a structured packed bed for post‐combustion CO2 capture. Energies 11 (11): 3103.
29 29 Asendrych, D., Niegodajew, P., and Drobniak, S. (2013). CFD modelling of CO2 capture in a packed bed by chemical absorption. Chem. Process Eng. 34 (2): 269–282.
30 30 Niegodajew, P. and Asendrych, D. (2016). Amine based CO2 capture – CFD simulation of absorber performance. Appl. Math. Modell. 40: 10222–10237.
31 31 Kim, J., Pham, D.A., and Lim, Y.I. (2016). Gas‐liquid multiphase computational fluid dynamics (CFD) of amine absorption column with structured packing for CO2 capture. Comput. Chem. Eng. 88: 39–49.
32 32 Gu, F., Liu, C.J., Yuan, X.G., and Yu, G.C. (2004). CFD simulation of liquid film flow on inclined plates. Chem. Eng. Technol. 27: 1099–1104.
33 33 Valluri, P., Matar, O.M., Hewitt, G.F., and Mendes, M.A. (2005). Thin film flow over structured packings at moderate Reynolds numbers. Chem. Eng. Sci. 60 (7): 1965–1975.
34 34 Ataki, A. and Bart, H.J. (2006). Experimental and CFD simulation study for the wetting of a structured packing element. Chem. Eng. Technol. 29 (3): 336–347.
35 35 Haroun, Y., Raynal, L., and Legendre, D. (2012). Mass transfer and liquid hold‐up determination in structured packing by CFD. Chem. Eng. Sci. 75: 342–348.
36 36 Iso, Y., Huang, J., Kato, M. et al. (2013). Numerical and experimental study on liquid film flows on packing elements in absorbers for post‐combustion CO2 capture. Energy Procedia 37: 860–868.
37 37 Sebastia‐Saez, D., Reina, T.R., and Arellano‐Garcia, H. (2017). Numerical modelling of braiding and meandering instabilities in gravity‐driven liquid rivulets. Chem. Ing. Tech. 89 (11): 1515–1522.
38 38 Sun, H., Wu, C., Shen, B. et al. (2018). Progress in the development and application of CaO‐based adsorbents for CO2 capture – a review. Mater. Today Sustainability1–2: 1–27.
39 39 Atsonios, K., Zeneli, M., Nikolopoulos, A. et al. (2015). Calcium looping process simulation based on an advanced thermodynamic model combined with CFD analysis. Fuel 153: 370.
40 40 Abbasi, E., Abbasian, J., and Arastoopour, H. (2015). CFD‐PBE numerical simulation of CO2 capture using MgO‐based sorbent. Powder Technol. 286: 616–628.
41 41 Ryan, E.M., DeCroix, D., Breault, R. et al. (2013). Multi‐phase CFD modeling of solid sorbent carbon capture system. Powder Technol. 242: 117–134.
42 42 Barelli, L., Bidini, G., and Gallorini, F. (2016). CO2 capture with solid sorbent: CFD modelling of an innovative reactor concept. Appl. Energy 162: 58–67.
43 43 Sornumpol, R., Uraisakul, W., Kuchonthara, P. et al. (2017). CFD simulation of fuel reactor in chemical looping combustion. Energy Procedia 138: 979–984.
44 44 Kim, M., Na, J., Park, S. et al. (2018). Modeling and validation of a pilot‐scale aqueous mineral carbonation reactor for carbon capture using computational fluid dynamics. Chem. Eng. Sci. 177: 301–312.
45 45 Chen, Q., Rosner, F., Rao, A. et al. (2019). Simulation of elevated temperature solid sorbent CO2 capture for pre‐combustion applications using computational fluid dynamics. Appl. Energy 237: 314–325.
46 46 Ghadirian, E., Abbasian, J., and Arastoopour, H. (2019). CFD simulation of gas and particle flow and a carbon capture process using a circulating fluidized bed (CFB) reacting loop. Powder Technol. 344: 27–35.
47 47 Wang, S., Hu, B., Jin, C. et al. (2019). Dense discrete phase model simulations of CO2 capture process in a fluidized bed absorber with potassium‐based solid sorbent. Powder Technol. 345: 260–266.
48 48 Wu, F., Argyle, M.D., Dellenback, P.A., and Fan, M. (2018). Progress in O2 separation for oxy‐fuel combustion–a promising way for cost‐effective CO2 capture: a review. Prog. Energy Combust. Sci. 67: 188–205.
49 49 Wu, Y., Liu, D., Duan, L. et al. (2018). Three‐dimensional CFD simulation of oxy‐fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel 216: 596–611.
50 50 Bhuiyan, A.A. and Naser, J. (2015). CFD modelling of co‐firing of biomass with coal under oxy‐fuel combustion in a large scale power plant. Fuel 159: 150–168.
51 51 Gharebaghi, M., Irons, M.R.A., Ma, L. et al. (2011). Large eddy simulation of oxy‐coal combustion in an industrial combustion test facility. Int. J. Greenhouse Gas Control5S1: S100–S110.
52 52 Mayr, B., Prieler, R., Demuth, M. et al. (2015). CFD and experimental analysis of a 115 kW natural gas fired lab‐scale furnace under oxy‐fuel and air‐fuel conditions. Fuel 159: 864–875.
53 53 Carrasco‐Maldonado, F., Bakken, J., Ditaranto, M. et al. (2017). Oxy‐fuel burner investigations for CO2 capture in cement plants. Energy Procedia 120: 120–125.
54 54 Edge, P.J., Heggs, P.J., Pourkashanian, M., and Stephenson, P.L. (2013). Integrated fluid dynamics‐process modelling of a coal‐fired power plant with carbon capture. Appl. Therm. Eng. 60: 456–464.
55 55 Fei, Y., Black, S., Szuhánszki, J. et al. (2015). Evaluation of the potential of retrofitting a coal power plant to oxi‐firing using CFD and process co‐simulation. Fuel Process. Technol. 131: 45–58.
56 56 He, D., Jiang, P., Lun, Z. et al. (2018). Pore scale CFD simulation of supercritical carbon dioxide drainage process in porous media saturated with water. Energy Sources Part A https://doi.org/10.1080/15567036.2018.1549155.
57 57 Dezfully, M.G., Jafari, A., and Gharibshahi, R. (2015). CFD simulation of enhanced oil recovery using nanosilica/supercritical CO2. Adv. Mater. Res. 1104: 81–86.
58 58 Gharibshahi, R., Jafari, A., and Ahmadi, H. (2019). CFD investigation of enhanced extra‐heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution. J. Pet. Sci. Eng. 174: 374–383.
59 59 Engelbrecht, N., Chiuta, S., Everson, R.C. et al. (2017). Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation. Chem. Eng. J. 313: 847–857.
60 60