Системные человеческие джунгли рисков. В. Б. Живетин
Читать онлайн книгу.τ мы уточняем модель, обусловленную погрешностью перехода от чистого запаздывания τ к инерционному. При этом между ними имеет место приближенное равенство
τ ≈ 3τk, (1.8)
которое следует из условия вхождения решения уравнения (1.6) в 5-процентную «трубку», т. е. совпадение решений уравнений при чистом и инерционном запаздываниях с точностью не менее 5 %.
Система уравнений (1.7) является замкнутой относительно δe и δn. Управлением служит параметр γ, определяющий долю затраченной энергии, кроме той, что идет в социальную систему.
В систему (1.7) входят параметры τD, τk, p*, γ и другие условия, в том числе начальные. При этом p* и γ так или иначе задаются, т. е. являются управляемыми, а два параметра τD, τk отражают свойства самой динамической системы, и их следует идентифицировать.
В общем случае необходимо учитывать потоки
Поток
Кроме сказанного в некоторых случаях следует рассматривать Е = (Ем, Еин), где Е задано уравнением (1.1); Ем – материальная компонента; Еин – интеллектуальная компонента динамической системы.
Уравнения (1.7)–(1.9) представляют собой математическую модель материальной компоненты системы, т. е. подсистемы (3). Функционирование подсистем (1, 2, 4) системы, создающее управления подсистемой (3) и соответствующими процессами
где Ем, Еин – материальная и интеллектуально-энергетические компоненты; полная энергия динамической системы Едс = (Ем, Еин); е(1)м, е(1)ин – входные потоки энергии материального и интеллектуально-энергетического; е(2)м, е(2)ин