Управление рисками рыночных систем (математическое моделирование). В. Б. Живетин
Читать онлайн книгу.xкндоп
Рис. 1.24 Рис. 1.25
Очевидно, что по известным вероятностным характеристикам (Δx, δx, xизм) находятся вероятностные характеристики (α, β, γ), и наоборот. Таким образом, рассматривается вектор (α, γ) зависимых случайных процессов, в частности стационарных, а α и β, по нашему предположению, независимые случайные процессы (величины).
В процессе выполнения поставленной цели относительно фактических и измеренных значений возможны следующие события.
1. Фактическое значение α параметра находится в области допустимых значений, т. е. на одном из трех отрезков, принадлежащих [xн, хв] (рис. 1.24). Тогда имеем событие Аα
2. Фактическое значение α находится вне области допустимых состояний, превышая хв (рис. 1.25). В итоге имеем Вα
3. Фактическое значение α находится вне области допустимых состояний, не достигая хн (рис. 1.26). В итоге имеем Сα
4. Измеренное значение γ индикатора х состояния рыночной системы находится в области допустимых состояний (рис. 1.27). В этом случае имеем событие Аγ
Рис. 1.26 Рис. 1.27
5. Измеренное значение γ индикатора х состояния рыночной системы находится вне области допустимых значений, превышая
6. Измеренное значение γ индикатора х находится вне области допустимых значений, не достигая
Рис. 1.28 Рис. 1.29
В процессе контроля индикатора х, изменяющегося во времени на всей числовой оси, возможны следующие гипотезы.
Гипотеза Аα. Ограничиваемый индикатор х, его фактическое значение хф, находится в области допустимых значений, т. е. имеет место событие Аα.
Гипотеза Вα. Фактическое значение индикатора рыночной системы xф находится вне области допустимых состояний, т. е. имеет месть событие Bα. С помощью средств контроля или оценки имеем Аγ, Вγ или Сγ.
Гипотеза Сα. Фактическое значение индикатора системы xф находится вне области допустимых состояний, т. е. имеет место событие Сα. С помощью средств контроля или оценки имеем Аγ, В γ или Сγ.
В итоге имеем различные события Sij, которые сгруппируем следующим образом:
I. (Аα ∩ Аγ);→S11;
II. (Аα ∩ Сγ); (Аα ∩ Вγ); → S21, S22;
III. (Сα ∩ Аγ); (Вα ∩ Аγ); → S31,